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A. Statement of the Problem Studied. 

Inference in parametric time series models was addressed with the goal of 
obtaining improved parameter estimates, test statistics and predictions. Research 

centered on two frameworks, viz. 
a) application of differential geometrical methods in time series and 
b) sampling based Bayesian methods in time series. 
Four popular and useful classes of time series processes that find wide appli- 

cation in physical and social sciences were considered for study. 

i) Univariate autoregressive moving average (ARMA) processes: 

c/>(B)(xt-fx) = 9(B)at, 

where xt is a time series, Bxt = xt_i, fi is the process mean, <j>(B) = 1 - faB - 
 (j>pB

p and 9(B) = 1 - 61B 6qB
q are polynomials in B of degrees p 

and q respectively, {at} is a sequence of i.i.d. normal variables with mean 0 and 
variance a\. These processes are useful in characterizing short-memory in time 

series. 

ii) Univariate autoregressive fractionally integrated moving average (ARFIMA) 

processes: 
<f>(B)(l-B)d(xt-fi) = 9(B)au 

where (1 - B)d =£   (d)(-B)j, -\ < d <  \ and the remaining terms are as 
i=o    3 

defined in (i). These processes are useful in characterizing long-memory if d > 0 
and intermediate-memory if d < 0. 

iii) Multivariate ARMA processes: 

where p= (^i, ...,fik) is the mean of the k-variate processes x , $(B) = I — <&iB — 

 §VB
P and 9(B) = I - 9XB 8qB

q are matrix polynomials in p and q 
respectively and a  are i.i.d. fc-variate normal vectors with mean 0 and covariance 

matrix E. 

iv) Multivariate ARFIMA processes: 

$(ß)D(B)(x  -£) = 0{B)at, 



where D(B) = Diag{{\ — B)dl,...,(l - B)dk], a diagonal matrix containing the 
orders of fractional differencing for each series, and the remaining quantities are 
defined in (iii). 

Application of differential geometrical methods to study asymptotic inference 
was investigated for (i) and (ii). All four processes were studied in the Bayesian 

framework. 

B. Summary of the Most Significant Results. 

For each of the four processes described in A, significant research findings 
under ARO support are reported here. 

i) Univariate ARMA processes. 

As an application of differential geometry, relative curvature measures of non- 
linearity were derived for nonseasonal and multiplicative seasonal autoregressive 
moving average (ARMA) models to be used as diagnostic tools to assess the de- 
gree of model nonlinearity. To illustrate, the maximum and root mean square 
curvatures were computed for 16 time series data sets modeled in the literature 
by ARMA models; it was seen that more than half the sets exhibited signifi- 
cantly large intrinsic or parameter-effects curvature. The effect of curvature on 
the confidence regions for parameters was discussed and illustrated by examples. 
In particular, the maximum relative intrinsic curvature 

„ 2m&x\\h'FNh\\ 
7max = m(7a   h     || F.h ||2 

and the maximum relative parameter-effects curvature 

2max || h'FTh \\ 
7max = m<Ja h     || F.h 

where h is an (m x 1) direction vector were computed; both the curvatures must 
be small for the validity of the linear approximation. Whereas 7^ax does not de- 
pend on the particular model parametrization, 7^ax does and can be reduced by 
a suitable reparametrization. For the same setting, the intrinsic and parameter- 
effects mean square curvatures were also computed (see Ravishanker, 1994 and 
Bates and Watts, 1980). For time series models, the relative intrinsic curvature 
is large, which implies that reparameterization would not alleviate the nonlin- 
earity.   Hence, corrections to confidence regions for curvature is useful and was 



studied. These curvature measures would serve as indicators of nonlinearity for a 
model/data combination in practical modeling. 

We considered (Ravishanker and Tsai, 1993) tests of the autocorrelation pa- 
rameter in a linear regression model with first-order autoregressive, AR(1), errors, 

viz. 
Y = Xß + e, 

where Y and e are nxl vectors of observations and errors respectively, X is an 
n x p matrix of deterministic regressors, ß is a p x 1 unknown parameter vector. 
We also assumed that e has a normal distribution with mean 0 and covariance 
matrix a2ij} where 

0 l-p2 

1 

P 

9 
1 

rjn.~\ 

r.n-2 

„n-1 •1 

and | p \< 1. We derived modified profile likelihood ratio and modified score tests 
fpr H0 : p = 0 by using the modified profile likelihood of Cox and Reid (1987). 
We showed via Monte Carlo simulations that these two tests are powerful and 
reliable by comparison to other existing tests such as the likelihood ratio test, 
the likelihood ratio test with Bartlett's adjustment and the most popular test, 
the Durbin-Warson test. We also generalized these tests to nonlinear regression 
models with AR(1) errors. We illustrated the behavior of these tests through 

examples. 
For a general stationary and invertible ARMA(p, q) process, we showed how 

to carry out an exact Bayesian analysis (Marriott, Ravishanker, Gelfand and 
Pai, 1995). Our approach was through the use of sampling based methods in- 
volving three novel aspects. First the constraints on the parameter space arising 
from the stationarity and invertibility conditions were handled by a convenient 
reparametrization to all of Euclidean (p + <?)-space. Second, required sampling 
was facilitated by the introduction of latent variables which, though increasing 
the dimensionality of the problem, greatly simplified the evaluation of the likeli- 
hood. Third, the particular sampling based approach used was a Markov chain 
Monte Carlo method which is a hybrid of the Gibbs sampler (Gelfand and Smith, 
1990) and the Metropolis algorithm. We also showed how straightforwardly the 



sampling based approach accommodates missing observations, outlier detection, 
prediction and model determination. 

ii) Univariate ARFIMA processes. 

The differential geometry of ARFIMA processes was studied (Ravishanker, 
1994). Properties of Toeplitz forms associated with the spectral density functions 
of these long memory processes were used to compute the geometric quantities 
associated with these problems. The role of these geometric quantities on the 
asymptotic bias and efficiency of the maximum likelihood estimates of the model 
parameters and on the Bartlett correction to the likelihood ratio test statistic 
for the fractional difference parameter was discussed. The study of asymptotic 
inference for the ARFIMA process is of considerable current research interest 
(Dahlhaus, 1989). This research is an extension of previous work by Ravishanker 
et.al. (1990) where the geometry of the ARMA process was discussed in relation 
to asymptotic inference. Analytical expressions for various geometric properties 
for ARFIMA processes were computed by utilizing results on Toeplitz forms (see 
Dahlhaus, 1989). Due to the unboundedness of sß(w) at w = 0, these compu- 
tations are not just trivial extensions of those for ARMA(p,q) processes. They 
provide useful information on leading terms associated with asymptotic bias of 
the fractional difference parameter d asymptotic efficiency of d. So far, these 
quantities were only assessed through simulation. 

We presented Bayesian inference for ARFIMA models using the sampling 
based approach (Pai and Ravishanker, 1994, 1996). We derived a form of the pos- 
terior density based on the exact likelihood function that is suitable for repetitive 
evaluation under the Metropolis-within-Gibbs algorithm. We presented a form of 
the posterior density based on the exact likelihood and which has greater compu- 
tational feasibility, through the incorporation of latent variables a = (ßi_g,..., a0) 

and z = (zi_p, ...,zo) corresponding to the unknown historical portion of the 

ARFIMA(0,d, 0) processes {at} and the ARFIMA(p,d,q) process {zt} respec- 
tively. We derived the joint distribution of the latent variables and data and thus 
a simple form for the posterior distribution. This work has generated considerable 
interest when presented at statistical meetings. 

iii) Multivariate ARMA processes. 

We presented a general framework for simultaneous modeling and fitting of 
multivariate and concurrent ARMA processes (Pai, Ravishanker and Gelfand, 



1994) using a framework of an exchangeable hierarchical Bayesian model, incor- 
porating dependence among the time series. Our motivating data set consisted of 
regional IBM revenue available monthly for several geographic regions. A mod- 
ified Gibbs sampling algorithm was used to carry out the fitting and to enable 
all subsequent inference. Graphical techniques using predictive distributions were 
employed to assess model adequacy and to select among models. Outlier estima- 
tion and prediction under the chosen model were used for planning and to measure 
the effect of special promotional events. 

We discussed forecasting, planning and contemporaneous outlier analysis for 
concurrent time series based on shrinkage estimation (Ravishanker, Wu and Dey, 
1994a). We constructed a bootstrap estiamte of the covariance of the parameter 
estimates vector to facilitate the shrinkage and showed the improvement derived 
(see also Ravishanker, Wu and Dey, 1995). 

iv) Multivariate ARFIMA processes. 

We presented a general framework for Bayesian inference of multivariate time 
series exhibiting both long and short memory behavior (Ravishanker and Ray, 
1995). The series were modeled using a multivariate ARFIMA process, which can 
capture both the short and long memory characteristics of the individual series, 
as well as interdependence and feedback relationships between the series. To fa- 
cilitate a sampling-based Bayesian approach, we derived the exact joint posterior 
density for the parameters in a form that is computationally feasible and used a 
modified Gibbs sampling algorithm to generate samples from the complete con- 
ditional distribution associated with each parameter. We also showed how an 
approximate form of the joint posterior density may be used for long time series. 
Scatter plots constructed from the samples from the Markov chain Monte Carlo 
approach enable the characterization of properties of the estimates. 
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